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On the stability of a laminar incompressible 
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The stability of small two-dimensional travelling-wave disturbances in an in- 
compressible laminar boundary layer over a flexible surface is considered. By 
first determining the wall admittance required to maintain a wave of given wave- 
number and phase speed, a characteristic equation is deduced which, in the 
limit of zero wall flexibility, reduces to that occurring in the ordinary stability 
theory of Tollmien and Schlichting. The equation obtained represents a slight 
and probably insignificant improvement upon that given recently by Benjamin 
(1960). Graphical methods are developed to determine the curve of neutral 
stability, as well as to identify the various modes of instability classified by 
Benjamin as ‘Class A’, ‘ Class B ’, and ‘Kelvin-HeImholtz ’ instability, respec- 
tively. Also, a method is devised whereby the optimum combination of surface 
effective mass, wave speed, and damping required to stabilize any given unstable 
Tollmien-Schlichting wave can be determined by a simple geometrical con- 
struction in the complex wall-admittance plane. 

What is believed to be a complete physical explanation for the influence of an 
infinite flexible wall on boundary-layer stability is presented. In  particular, the 
effect of damping in the wall is discussed at  some length. The seemingly para- 
doxical result that damping destabilizes class A waves (i-e. waves of the Tollmien- 
Schlichting type) is explained by considering the related problem of flutter of 
an infinite panel in incompressible potential flow, for which damping has the 
same qualitative effect. It is shown that the class A waves are associated with a 
decrease of the total kinetic and elastic energy of the fluid and the wall, so that 
any dissipation of energy in the wall will only make the wave amplitude increase 
to compensate for the lowered energy level. The Kelvin-Helmholtz type of in- 
stability will occur when the effective stiffness of the panel is too low to withstand, 
for all values of the phase speed, the pressure forces induced on the wavy wall. 

The numerical examples presented show that the increase in the critical Rey- 
nolds number that can be achieved with a wall of moderate flexibility is modest, 
and that some other explanation for the experimentally observed effects of a 
flexible wall on the friction drag must be considered. 

1. Introduction 
The interest in the problem arose inconnexion with the publications by Kramer 

1960 a, b )  on the reduction of skin-friction drag obtained by covering the surface 
of an underwater projectile with a flexible skin of special design. Kramer’s own 
explanation of the observed effects was that the internal friction in the flexible 
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wall damped out the Tollmien-Schlichting waves and hence kept the boundary- 
layer laminar. Inspired by Kriimer’s work, several investigators have attacked 
the theoretical problem of the stability of a laminar boundary layer over a flexible 
surface: for example, Betchov (1959), Boggs & Tokita (1960), Hains & Price 
(1960), Benjamin (1960) and very recently Nonweiler (1961). Of these treatments 
the one by Benjamin is the most complete. He showed that when the wall is 
flexible there are three more or less distinct types of instability that can occur. 
The first type, ‘ Class A ’ waves, essentially comprises Tollmien-Schlichting waves 
modified by the flexible wall. The analysis showed that these waves are stabilized 
by a sufficient in-phase response of the flexible wall to the accompanying pressure 
wave, but they actually are destabilized by the presence of internal friction in 
the wall. The unstable waves of the second type identified by Benjamin, ‘ Class B ’ 
waves, are presumably similar to those induced by wind over a water surface and 
are stabilized by damping in the wall. The third possible kind of instability is of 
the Kelvin-Helmholtz type and can occur when the wall flexibility becomes large. 

To act as a successful stabilizing device, a flexible wall should thus have low 
damping and high flexibility in order to damp out the class A waves. On the other 
hand, the damping must be large enough to inhibit class B waves, and the 
flexibility must not be so large that Kelvin-Helmholtz instability can occur. It 
it evident that the selection of the combination of wall parameters that will give 
best stabilizing results is apt to be quite critical. 

In  the present paper the stability theory for viscous flow over a flexible 
surface is examined critically in more detail. The problem is first stated as a 
direct boundary-layer problem by determining the admittance of the flexible 
wall required to maintain a given neutrally stable wave. By comparing this wall 
admittance to that of the given wall, a characteristic equation is obtained whose 
solution gives, for each wave-number, the wave speed and Reynolds number for 
neutrally stable waves. The characteristic equation thus obtained diEers from 
that given by Benjamin (1960) only in that a different version of the viscous part 
of the solution is used, which is possibly somewhat more accurate for large wave 
speeds and highly curved boundary-layer velocity profiles. The characteristic 
equation is solved by a relatively simple graphical method similar to the 
original one used by Tollmien and Schlichting. 

Since the flexibility of the wall introduces several types of instability, it is 
considerably more difficult than in the rigid-wall case to determine on which side 
of a neutral curve instability occurs, and a graphical method for this is therefore 
devised. 

The problem of choosing the optimum combination of surface properties for 
best stabilizing results is considered next. The approach taken is that one wants 
to choose the Rayleigh wave speed of the surface and the internal damping so 
as to minimize the surface flexibility required to stabilize any wave of given 
wave-number. The role played by internal damping in the surface is given special 
attention, and a physical explanation of the different effects of damping on the 
class A waves, on one hand, and on the class B waves, on the other, is given. 
A new physical explanation of the Kelvin-Helmholtz type of instability is also 
presented. 
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Practically all the necessary mathematical analysis and most of the numerical 
calculations needed for the present problem have been carried out in connexion 
with the ordinary Tollmien-Schlichting stability theory. It is assumed that the 
reader is familiar with this theory as it is presented in the books by Schlichting 
(1960) and by Lin (1955). 

2. Wall admittance for neutrally stable waves 
The boundary layer is characterized by its thickness 6, non-dimensional 

velocity distribution U(y), and Reynolds number R = SUJv, where U, and v 
are the free-stream velocity and kinematic viscosity respectively. The usual 
non-dimensional variables are introduced by dividing all lengths by 6, velocities 
by U,, time by blU& and pressures by pU:. On the steady, nearly parallel 
boundary-layer flow are superimposed small two-dimensional periodic dis- 
turbance velocities 

where @ is the perturbation stream function. If we seek travelling-wave type 
solutions of the form 

where both a and c are assumed real, the differential equation for q5 becomes the 
Orr-Sommerfeld equation 

(1) 

$ = #(y) eicrt;E-eO (2) 

% =  $a/, v 1 =  -$x, 

iaR[( U - C) ($' I -  a'$) - U"$] = $'" - 2 ~ ~ 4 "  +a4#. 

$(a) = $'(a) = 0, 

(3) 

Two of the associated boundary conditions are that the perturbation velocities 
should vanish at  infinity, i.e. 

and that (if tangential deformations of the wall are neglected) they should also 
give zero tangential velocity at  the wall. Thus, defining the instantaneous 
position of the wall by 

we must have 

(4) 

y = aeia(x+O, ( 5 )  

u+u, = u + $ I  eia(x+t) a t  y = a eia(x-d). (6) 

Linearization in a gives 
auk+ & = 0, (7 )  

where the subscript w refers to  values at the mean position of the wall, i.e. at 
y = 0. At the wall, v1 must be equal to the normal velocity of the wall; hence, 
from ( l ) ,  (2) and (5) after linearization, 

$w = ca. 
Combination of (7) and (8) gives 

c&+ u;q5w = 0. (9) 

The perturbation pressure at  the wall can be obtained either from the x-momen- 
tum or y-momentum equations. In  the present problem the simplest procedure 
is, following Benjamin (1959), to integrate the y-momentum equation over y, 
which gives 

where 
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The characteristics of the flexible surface may be expressed in several different 
ways. Benjamin (1960) introduced a complex compliance equal to the deflexion 
of the surface under a pressure wave of unit amplitude. In  the present paper, 
we will instead let the properties of the surface be defined by its (normal) 
mechanical admittance 

normal velocity iaca 
wall pressure fjw 

__ - __ y = - -  - 

to a pressure wave of given wave-number a and phase speed c. The concept of 
surface admittance is well known in the field of acoustics, but otherwise this 
choice does not have any distinct advantage over that of Benjamin. In  any case, 
it is easy to obtain the compliance from the admittance through division by iac.  
The admittance defined by (12) is non-dimensional and related to the dimen- 
sional admittance Y* through 

Y = pU,Y* 

The non-dimensional admittance Yo required to maintain neutrally stable 
travelling waves is obtained from (12), (8) and (10): thus 

Yo = iaq5,/ [ a2 lom ( U - c - ia/R) q5dy - ia&,/R . 1 
The problem is now reduced to that of finding solutions of (3) for real a and c 

which satisfy (4) and (9). By solving for the fourth boundary condition (la), 
we have cast the original problem as a direct boundary-value problem and thus 
deferred the characteristic value problem to a later stage. This technique might 
possibly be used to advantage also in other stability problems. 

3. Asymptotic solution for large Reynolds number 
As in the rigid-wall case, the Reynolds number for neutral stability may be 

expected to be relatively large, so that the same asymptotic technique may be 
employed. Thus two asymptotic solutions and q5z of (3) are obtained from the 
‘ inviscid’ equation 

The inviscid solutions were given by Heisenberg in the form of a convergent series 
in a2 (see Lin 1955, p. 34). We will denote the linear combination of and #z  
t,hat vanishes at infinity by CD. 

A second pair of asymptotic solutions are the ‘viscous’ solutions q53 and q54 
obtained as the leading term of an expansion in (aR)-*. The solution vanishing 
at y = co is the one commonly denoted by and given by (e.g. see Lin 1955, 

(U - c )  (#’/ - a”) - U” = 0. (15) 

p. 128) 

where 

We have here used the improved solution given by Tollmien (1947) which is 
uniformly valid for all y. The reason for this is twofold. First, the values of c 
encountered in the flexible-wall problem can be quite high, so that the profile 
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curvature at  the critical point may be comparatively large. Secondly, the values 
of h calculated according to (21) are generally much smaller than those obtained 
using the simpler definition of h (cf. Lin 1955, equation (3.6.6)) so that the cor- 
rection for large c is much less. The rule for selecting the correct branches of the 
solutions is always to pass below the critical point yc (defined by U(yc)  = c)  for 
nearly real values of c and positive UL (see Lin 1955, p. 35). 

The proper solution satisfying (4) and (9) is thus 

$ = @ - W @ L  + u; @w)/(c&w + K 3 3 w ) .  (18) 

In  evaluating the pressure at the surface, it  was shown by Benjamin (1959) that 
a very good approximation to (10) is 

where (15) has been used. The error in (19) is at  most of order (aR)-f and can 
therefore be neglected in consistency with the asymptotic expansion sought.? 
Setting 

~wY&w/c&w = - (1 +h)F(z ) ,  (20) 

where 
U‘ 3 

A = zL, C8 [.tJ-ouc(c- u ) a d y ]  - 1, 

2 = (aR)f [:J-;e(c- Y U)4dy] 
8 

( 2 2 )  

and P(z) is the Tietjens function defined by 

j-z d q C  @ H y [ # ( i { ) q  at: 

z /is @Hf)[$(i<)4]  a< ’ 
(23) F(z)  = - 25-@ - 

we obtain from (IS), neglecting terms of order (aR)-g arising from the factor 
“ / ( u - c ) l t  in (1% 

$hw = @w+(l+h)B(z)[@w+(c/o~)@~]/[l-(l+h)F(z)]. (24) 

Equations (19) and (34) may now be substituted into (14) to give Yo. The result 
simplifies considerably if, following Lin, we introduce the related functions 

F ( 2 )  = [ 1 - F(z)]-17 (25) 

and u + iv = [l + 77; @,/c@;]-’. (26) 

A comprehensive table of F has recently been given by Miles (1960). The 
imaginary part of (26) is very nearly a function of c alone, tables of which have 
been given by Lin (1945) and by Lees (1947). For small a, the real part is approxi- 
mately u 2: c UL,/a( 1 - c)2. (27 1 

7 If instead the 2-momentum equation is used to calculate the pressure a result is 
obtained that differs slightly from (19) by terms involving h(c) .  The precise reason for this 
difference has not yet been found. However, it has been pointed out to me by Dr T. Brooke 
Benjamin that in an approximate theory the use of the y-momentum equation is likely to 
give a more accurate result. 
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Substituting (25) and (26) into (19) and (24), and then finally into (14), we arrive 
at the wall admittance required to maintain neutrally stable waves: 

For the Blasius profile, h is less than 0-05 for c < 0.7. Also z differs from 
(aR)) cub-% by less than 3 yo for c < 0.7. Apparently a good approximation for 
most practical cases is to neglect h and use the simplified expression (32) for z ,  
as was done by Benjamin (1960). 

4. The eigenvalue problem 
For a flexible wall with a surface admittance given as a function of wave- 

number and wave speed, there exist certain combinations of a, c and R for which 
neutrally stable travelling waves are possible. These eigenvalues are determined 

A Y  = Yo- Y = 0. (29) 
by 

The introduction of Y,  from (28) gives the characteristic equation 

2 [ U S i V -  2F 1 - Y = O .  u:, 1 + h ( l - - P )  

For low to moderately large values of c, h may be neglected, whereby (30) 
simplifies to 

(31) 2F--u--iv+iU:,Y/a = 0) 

with z = c(aR)*/U$. (32) 

This equation is identical to that given by Benjamin (1960). As the subsequent 
results will show, the unstable waves tend to have a higher wave speed for 
a flexible surface with damping than for a rigid one, so that the difference 
between (30) and (31) might in extreme cases be of importance. However, 
in all the numerical examples given below, the simplified equation (31) has 
been used. 

To solve (30) i t  is convenient to recast it as follows: 

= G ( ~ , c ) .  (1 + A )  (( U;,/ia) Y + u + iv> 
1 + A{( ULjia) Y + u + iv] F(z) = (33) 

In this way the Reynolds number enters directly only into the left-hand side of 
the equation through the parameter z. The complex function F may be plotted 
in a Argand diagram with z as a parameter. This is done in figure 1 using the table 
of 9 ( z )  given by Miles (1960). For a graphical solution of (33) the right-hand 
side G(a,c) may be plotted for each a with c as a parameter in the same polar 
diagram as F. The intersections of the curves give the eigenvalues c and z, 
and hence R, for each a. The procedure is an extension of the original method 
proposed by Tollmien and Schlichting (see Schlichting 1960, pp, 394-396). 

As a representation of the flexible wall in the calculations that follow, the 
expression corresponding to that suggested by Benjamin (1960) will be used. 
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This is the expression valid for non-dispersive systems such as a membrane with 
frictional damping, or for a deep layer of uniform elastic material, viz. 

where m = m*/p8, C: = T*lm*U2,, d = d*S/U, are the non-dimensional effective 
mass, Rayleigh-wave speed, and damping, respectively. By letting these 
quantities vary with a we may also use this expression to represent dispersive 
systems. For a visco-elastic material like rubber, the parameters are actually 

I 4.0 

I 

FIGTRE 1. The function 9. The sample Cf-curves correspond to a = 0-8 and the 
flexible wall considered in figure 4. (-.-.-, Flexible wall; ----, rigid wall.) 

also (complex) functions of the frequency, i.e. of ac, due to relaxation effects 
in the material. However, (34) probably reproduces reasonably well the 
behaviour of any elastic surface for c close to c,,. As will be apparent in later 
sections, this region is of particular interest in the present problem. For very 
large wavelengths and low wave-velocities, the stiffness of the surface must 
approach a constant value; hence mc; must vary as for low a. The flexible 
skin developed by Gamer  (1960a, b )  consisted of an outer rubber skin attached 
to a rigid surface through short stubs. The space between the outer skin and the 
rigid surface was filled with a viscous liquid. For large wavelengths, the spring 
constant of such a wall is determined mainly by the stubs. Also, the mass 
reaction term is then dominated by the inertia of the fluid sloshing back and 
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forth due to the wavy deformation, and a simplified analysis similar to that of 
Kramer (1960 b )  shows that in the limit of vanishing a the properties of the layer 
are given by (34) with m proportional to a-2 and c, and d constant. For large a 

----_ -- --- -- - i -------- 

---4-4- Unstable 

I I 

1000 2000 3000 

R 

c050, 0 2 5  

L I I I 

R 
1000 2000 3000 4000 

FIGURE 2. Curves of neutral stability for a flexible wall with c,, = 0.75 and d = 0.025. 
rn = 2 for a 2 0.5, m = 0 * 5 c ~ - ~  for a < 0.5: (a)  wave-number (-, flexible wall; ----, 
rigid wall). ( 6 )  Wave speed. 

the surface would behave more like a membrane or plate. In  the numerical 
examples shown in figures 2 , 3  and 4, the properties of a flexible wall of Kramer’s 
type are simulated approximately by letting m be constant for a larger than a 
certain value a,, and proportional to for a < a,. The other parameters are 
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taken to be constants. Although this is a very crude approximation to the pro- 
perties of this particular kind of flexible wall, it probably will reproduce quali- 
tatively the main effects. In  all the numerical examples, m was set equal to 2 for 

--_ - --_ -- --- -- ,.----- ----___ 
/ 
I 
'\ \ 

\ 1-C 

a 

0.5 -==z 

1 

//,//,,/ ,,,;,, /,,, 
Stable 

to 2000 3000 4000 
R 

FIGURE 3. Curve of neutral stability for a flexible wall with d = 0-05. e, and rn 
the same as in figure 2. - , Flexible wall; ----, rigid wall. 

1.0 

a 

0 5  

FIGURE 4. Curve of neutral stability for a wall with d = 0.05 and c,, = 1. m the same 
as in figures 2 and 3. - , Flexible wall; ----, rigid wall. 

cc 2 0.5 and equal to 0 . 5 ~ ~  for cc < 0.5. In  the calculations, u was approximated 
by the first two terms of a power series expansion in a, the leading term which is 
proportional to a-1 being the same as (27). Values of v for c > 0.5 were obtained 
from the well-known approximate formulae (Lin 1955, equation (5.4.2)) using 
auxiliary tables given by Lees (1947). It should be noted that, for some of the 
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cases considered here, values of (aB)-a and c were encountered which are clearly 
beyond the limits of applicability of the ordinary approximate theories, and the 
accuracy of the calculations should be assessed accordingly. In  particular, the 
low-Reynolds-number loops in figure 2 should be regarded as only qualitatively 
correct. 

The examples shown in figures 2, 3 and 4 were chosen to demonstrate the 
influence of varying co and d .  Figure 2 has co = 0.75 and B low damping, 
d = 0.025. Wave-numbers for neutral stability are shown in figure 2a and corre- 
sponding wave speeds in figure 2 b .  Two stability loops appear, one roughly 
corresponding to the one for the rigid-wall case (which is included for com- 
parison), and another one at rather low Reynolds numbers. (A method to deter- 
mine which side of the neutral curve represents instability is given in the fol- 
lowing section.) The loop at  lower Reynolds number is very sensitive to changes 
in the damping. If the damping is increased, the unstable region enclosed by this 
loop will decrease. As shown in figure 3, the lower loop has vanished completely 
ford = 0.05. If the damping is decreased, on the other hand, the loop will expand 
and eventually merge with the upper loop, so that some wave-numbers will be 
unstable for all Reynolds numbers. It will be apparent below that the unstable 
waves within the lower loop are of class B type according to Benjamin’s classi- 
fication (1960). The upper loop, on the other hand, is affected in the completely 
opposite manner by the damping, as becomes evident by comparing figures 2 
and 3. The unstable waves in the upper loop are of the class A type. A physical 
explanation for the different effects of damping in the two cases is given later. 
For the combination of surface parameters used in figure 3, the critical Reynolds 
number is considerably lower than in the rigid-wall case, although the range 
of unstable wave-numbers is substantially smaller. An increase in the critical 
Reynolds number in this case can be obtained by increasing the surface stiffness, 
i.e. by increasing co. With co = 1, which is the case shown in figure 4, the critical 
Reynolds number is slightly higher than in the rigid-wall case, but the range of 
unstable wave-numbers is larger thanin the case shown in figure 3. This indicates 
that if one parameter is given, say m, there is for every a an optimum combination 
of the other two that makes the boundary layer stable for as high a Reynolds 
number as possible. This line will be explored in a later section. We note that, 
in the examples shown, the beneficial effects on the critical Reynolds number 
are rather modest despite the rather high surface flexibility chosen. For the case 
considered in figure 4, the flexibility is such that the deformation of the wall 
due to a steady constant pressure equal to the dynamic pressure is equal to the 
boundary-layer thickness, i.e. the flexibility is moderately large. 

5. Determining the unstable regions 
The procedure described above for calculating the neutral curve gives, of 

course, no direct information about whether disturbances of a certain wavelength 
are stable or unstable for a particular Reynolds number. As the use of any stan- 
dard method like the Nyquist diagram is not feasible to determine this in the 
present problem, an approximate method has instead been developed based on 
the fact that the eigenvalues are mostly located very close to the real axis. 



Xtability of a boundary layer on a flexible surfme 619 

Consider the imaginary part of the function A Y (equation (29)) plotted versus 
the real part with c as a parameter for a given combination of a and R. Near a 
simple zero c = c, (an eigenvalue), the function will behave like 

FIGURE 5. ‘Fluid admittance’ Yo for R = 4000 and various values of a. 

where f ( c )  varies so slowly that it can be considered constant in a small region 
around c,. If c, is purely real, A Y will pass through the origin. If the imaginary 
part of c, = cer+icei is positive (an unstable root), the vector AY will rotate 
counterclockwise an angle of m as c ,  is passed (c increasing). Hence there is an 
unstable root whenever the curve for A Y passes (close) to the right of the origin. 
To the first order, the amplification rate is given by 

(This expression is purely imaginary since AY is perpendicular to aAY/i3c for 
minimum 1 A Y I. ) 

As an illustration we consider the rigid-wall case for which A Y = Yo. Figure 5 
shows Yo for R = 4000 and various values of a. It is seen that disturbances with 
a = 0.6 and 1.0 are unstable, whereas a = 0.4 is stable. Some preliminary 
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estimates indicate that the most unstable wave for this Reynolds number is 
approximately that with a = 1, for which (36) gives 

ce = 0.351 + 0*016i, 

is reasonably good agreement with calculations previously given in the literature. 
The method fails in two specific circumstances. If the wave speed c0 for the 

flexible skin is near an eigenvalue (which might happen in case of class B waves), 
AY will rotate counterclockwise an angle n- as co is passed since Y has a pole at  
approximately c = co-id/2a. To avoid this difficulty, one can instead of AY 
consider the function E defined by 

E = (Yo/Y)- 1,  ( 3 7 )  

which has no poles near the real axis. Using the expressions (28) and (34) for 
Yo and Y ,  we obtain 

The function E can be investigated in the same way as A Y .  

FIGURE 6. Illustration of the use of the function E to  determine whether instability occurs 
for a given a and R.  (a)  Unstable class B wave; ( b )  stable class A wave; (c) Kelvin- 
Helmholtz instability. 

A second difficulty arises when two roots are located very close together or 
are complex conjugates, or very nearly so. This happens in the case of Kelvin- 
Helmholtz instability. Benjamin's (1960) investigation of this type of instability 
was based on a simplified second-order equation. In  the complete problem the 
roots rarely occur in complex conjugate pairs, except in the region of small a 
for large flexibility and in other special cases. A method to construct such cases 
is given in the next section. However, it may often happen that two roots are 
very nearly complex conjugates. If there are two roots c1 and c2 located very 
close together, the function E will, in the neighbourhood of these roots, behave 
like 

q(c) being a slowly varying function. Hence E may not rotate as c passes c1 and 
c2, and the above method will be unable to determine whether there is an un- 
stable root. However, this case of instability may be detected by considering 
the derivative of E :  

E = (C - cl) (C - cZ) q(c), (39) 

- (c-c1)(c-cz)--(C1+c2-2c)q a4 21 2 ( c-------- c1 ; Cz) q, 
aE _ -  
a C  ac 
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which rotates an angle of 7~ or - 7~ depending on whether the unstable or the stable 
root is farther from the real axis. The various cases that can occur are illustrated 
in figure 6. 

In most practical cases one can determine the unstable wavelengths directly 
from the complex 9-diagram used in the previous section to determine the 
neutral curve. 

6. Optimum surface properties for boundary-layer stabilization 
Benjamin (1960) found that for a flexible surface to be effective as a stabilizing 

device its admittance should generally have a large negative imaginary part and 
as small a real part as possible. (The real part of Y is always positive for positive 
damping.) This result is evident from the graphical construction for finding the 
neutral curve (see figure 1) .  A negative imaginary part of Y will displace the 
G-curve for a given a to the left (see equation (33)), making the unstable region 
of z (the region on the 9-curve above the G-curve) smaller, i.e. the region of 
unstable Reynolds number smaller. A positive real part of Y ,  on the other hand, 
will displace the curve downward, making the unstable region of x larger. 

To make the imaginary part of Y a large negative number, one could either 
make m small or co close to (but always larger) than the wave speed of the unstable 
Tollmien-Schlichting waves (cf. equation (34)). For c close to c,, on the other 
hand, the real part of I' will become large and this will have a destabilizing effect. 
Since m is proportional to the ratio of the mass of flexible layer to the mass of the 
fluid within the boundary layer, there will in practice be a lower limit on the 
value of m one can obtain. The practical problem is thus to choose c, and d in 
such a way as to allow as large a value of m as possible. The introduction of (34) 
into the characteristic equation (29) gives 

(41) 
iC 

ma(co - c2- icdla) 
Y,+ --2 = 0. 

The first term has a root at c = cT = c,+ic,,, where cT is the complex wave 
speed for an unstable Tollmien-Schlichting wave. The second term has a pole 
at c = c1 E c,, - id/2a. Expanding in series about these points and retaining only 
the linear term in each, we obtain 

where 

(42) 

(43) 

Usually A,  and Ai are positive, with A, 4 A, (see figure 5). The approximation 
(42) is generally good for large values of m when the modification of the eigen- 
value due to the flexible wall is small, and when d is very small. For a given a,  
one wants to choose the parameters m, co and d so that both roots of (42) are 
stable, i.e. are located in the lower half-plane. In the limiting case at least one 
of the roots is located on the real axis, say at c = a. The second root c = b will 
then be located at  

(44) 

where b, = cT,. + co - a ,  b, = cTi - 8, 8 = d/Za. (45) 

b = CT+Cl-a = b,+ibi, 
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Solving (42) for c1 in terms of a, we obtain 

C 1  = a -k B/m(a - C T ) ,  

where B = A-I = B, - iBi. Hence 

From the second of (45) it follows that 6 needs be at  least as large as cTi; otherwise 
the root b will be unstable. Putting e = cTi in (48) and varying a, we find that the 
maximum allowable m is 

mmax = (Br/24i) { (1 + a2)' - I}, 

a = CTr $. CT(((T-l + (1 f g-2)'}. 

co = CTr + 2cTi{V-l+ (1 + a-2)'}. 

(49) 

where a = BJB, = Ai/A,, which occurs for 

(50 )  

Introducing these values into (47), we obtain the following optimum value for co: 

(51) 

From (45) it then follows that b = a, i.e. a is a double root. Since cTi is generally 
very small, it may in practice often be impossible to find a flexible material with 
such a small damping that E = cTi. Hence in many practical cases E will be given 
by the lowest value one can achieve. One then finds that the optimum value 
of a is again given by (50), but instead of (49) and (51) one obtains 

and 

respectively. Hence the maximum allowable mass is inversely proportional to 
the damping. In  this case the second root b is damped with its real part given 

These results can be given a simple graphical interpretation. In  the complex 
plane, (42) approximates Yo by a straight line and Y by a circle with radius 
r = (md)-l and centre at = r. One can easily show that, in the optimum case, 
Y is tangent to Yo at c = a. Hence it is easy to find the optimum Y by con- 
structing the circle tangent to Yo with its centre on the real axis. The requirement 
that the point of tangency should correspond to the same value of c for both Y 
and Yo gives the necessary relation that fixes m and co for a given d. It is sug- 
gested that this graphical method gives very nearly the optimum wall properties 
also with Y and Yo given by their exact expressions. The minimum value of d 
is that for which a(AY)/ac = 0 at  a, since then a becomes a double root. Results 
of such constructions are shown in figure 7 for R = 3000 and two values of a, 
namely a = 0.4 and a = 0.8. The optimum values of m and co thus obtained are 
plotted versus d. Evidently the damping must be very low unless a very light 

CO = CTr f (CTi + 6 )  (r-'+ (1 f a-2)'}, (5la) 

by (45). 
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wall is used. Also the most unstable Tollmien-Schlichting waves with wave- 
numbers of order unity are relatively easy to stabilize compared to those of 
lower wave-numbers. I n  fact, with a flexible surface, the most difficult ones to 
stabilize are those with wave-numbers below those for the unstable region in 
the rigid-wall case. The reason for this is that the flexible wall tends to shift the 
unstable region to lower a, as was found by Benjamin (1960). 

1 
0.1 

d 

FIGURE 7. Optimum surface properties determined for R = 3000 as 
function of the damping coefficient d. -, co; ---- t m. 

The dependenceof thewall parameters on adetermined by themethoddescribed 
above could probably in most cases not be reproduced by any material wall, so 
that the actual design of a suitable flexible wall for stabilizing all wave-numbers 
would be based on a compromise between the requirements for different wave- 
numbers. Furthermore, the present method gives no information as to whether 
stability will exist for Reynolds numbers away from the design value. In  fact, 
for the case of minimum damping, instability would almost always occur if the 
Reynolds number were changed from its design point. Also, change of any one 
of the parameters for the flexible wall would cause instability. 

7. The role of damping 
We will now study the special role that is played by the damping in the 

flexible surface. For this purpose, consider the surface to be subjected to a forced 
oscillation in a travelling-wave mode with constant amplitude, such that the 
normal velocity is ZJ, = 0 exp [ia(x - ct)]. The non-dimensional pressure required 
for this is AZv,, where the mechanical wave impedance AZ = AZ, + iAZi of the 
system is the difference between the actual surface impedance and that required 
to maintain neutrally stable waves, i.e. 

AZ = Y-l- Ycl = ~ E W L ( ( C ~ / C )  - ~ - i ( d / a ) ) -  Yc’, (62) 

where the expression (34) for Y has been used. The imaginary (reactance) part 
of AZ represents the pressure component that is in phase with the surface deforma- 
tion, whereas the real (resistive) part gives the out-of-phase component. At the 
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real eigenvalue c = a, both the real and imaginary parts of AZ vanish. Suppose 
now that the damping ratio d in the layer is increased by a small amount Ad. 
To sustain the oscillation at  constant amplitude will then require the mean power 
transfer per unit length of E = &mAd 1612. 

The eigenvalue will change to a + Ac, where in the first approximation 

- 
(53) 

AC = Ac, + iAc, = - mAd/(aAZ/ac),=,. (54) 

The imaginary part of Ac will be positive or negative depending on whether the 
imaginary part of (aAZ/ac),,, is greater or less than zero. From (52) we find that 

Im {(aAZ/ac),,,) = - am{ 1 + (c~/a2)) - Im {a2m2[(c~/a) - a - (id/a)12 (aY,/ac),=,}, 

since Yo = Y for c = a. The imaginary part of aY,/ac will generally be negative, 
so that the second term will be positive (assuming d to be small). Hence the sign 
of (55) depends on whether the first or second term dominate. For class B waves 
(for which the wave speed is close to co), the second term becomes small so that 
Im {aA.Z/ac) < 0 and hence Aci < 0,  i.e. the root is stable. For class A waves, on 
the other hand, the second term will dominate, making Im{aAZ/ac) > 0 and 
hence Aci > 0,  i.e. the root unstable. Thus we find that an increase in the damping 
will stabilize class B waves but destabilize class A waves, in accordance with 
Benjamin’s (1960) observation. For both types of waves, however, the power 
required to sustain a wave of constant amplitude increases with the damping. 
This property, which turns out to be special to waves travelling with a speed 
that is subsonic with respect to the fluid and is less than the free-stream speed, 
can most easily be studied by considering the case of potential flow, for which 
the characteristic equation (52) simplifies to 

( 5 5 )  

For d = 0 this is exactly equivalent to the equation employed by Benjamin 
(1960) for studying Kelvin-Helmholtz instability. The flow causes a negative 
pressure that is in phase with the deformation and proportional to the wave- 
number and the square of the difference between the flow speed and the wave 
speed. The wave speed adjusts itself to make the induced pressure balance the 
‘effective stiffness ’ (stiffness - (inertial reaction\) of the flexible surface. Pro- 
vided the stiffness is sufficiently high there will be two values a, and b, of the wave 
speed for which this is possible (see figure 8). Lowering of the stiffness will cause 
a, to increase and b, to decrease. 

For very low wall-stiffness there will be no real value of c for which the effective 
stiffness balances the induced pressure. This case is illustrated by the broken line 
in figure 8. No neutrally stable wave then can exist, but instead Kelvin-Helm- 
holtz instability will occur. Thus, the lowest allowable stiffness required to avoid 
instability is that for which a, and b, coalesce, and it is immediately apparent 
from the figure why Kelvin-Helmholtz instability never can occur for c, 2 1 as 
Benjamin’s (1960) result shows. 
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Consider now the case with damping. Solution of (56) gives for the two roots 

a = a,+iai = ( 1 + a m ) - l { l + ~ i m d - ( 1 - p - i m d ) ~ ) ,  

b = b,+ibi = (l+am)-'(l-gimd+(l-p-imd)~), 
q = (1 - amc,") (1 + am) + *m2d2. 

(57) 

(58) 

(59) where 

Three different cases may be distinguished: namely, when p < 0,O < q < 1, and 
q > 1. In  the first, the surface stiffness is so high that the wave speed for the 
a-wave (equation (57))  is negative and both waves are damped. (Note that m 

wave speed 

FIGURE 8. Balance of in-phase forces. 

and c,, generally are functions of a, and that, for low a, me," is proportional to 
a-2, so that q is always negative in the limit of vanishing a.) In  the second case, 
both waves have a positive wave speed, the slowest wave being unstable and the 
the other stable. This corresponds to the case illustrated by the solid curve in 
figure 8. In  the third case, which corresponds directly to the low-stiffness case 
illustrated by the broken curve in figure 8, the square-root term in (57) and (58) 
will have a large imaginary part, i.e. a violent instability of the Kelvin-Helmholtz 
type will occur. Evidently the lowest allowable stiffness for complete stability 
in the region of small wave-number is not determined by the Kelvin-Helmholtz 
instability condition as shown by Benjamin (1960) for the case d = 0, but rather 
by the more restrictive condition that q < 0 in the whole region. 

The roots a and b in the simplified problem correspond directly to the class A 
and class B types of waves, respectively, in the full viscous problem. Evidently 
the destabilizing effect of damping on class A waves is not essentially associated 
with the fluid viscosity. It should therefore be possible to obtain a physical 
explanation of this property by studying the simplified problem in more detail. 

Let us assume that a neutrally stable wave has been set up in a membrane 
without damping. Travelling with the wave there will be a pressure distribution 
in phase with the wave that balances exactly the 'effective stiffness' of the 
membrane. Assume now that damping is introduced, for example, by exposing 
the lower surface of the membrane to a viscous fluid. The damping will cause an 
out-of-phase pressure distribution acting on the lower membrane surface as 
illustrated in figure 9. 

40 FluidMech 13 
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From the figure it is evident that this pressure distribution should have the 
effect of a second-order ‘brake’ on the travelling wave, and hence tend to slow 
it down. If the in-phase restoring force increases with c, as is the case for class A 
waves, then the force exerted by the damping will tend to lower the wave velocity 
into a region of c for which the elastic force is insufficient to counteract the sum 
of hydrodynamic and inertial forces acting on the membrane. However, since 
these are always in phase with the deformation for waves of cunstant amplitude, 

FIGURE 9. The retarding effect of damping. 

the amplitude must start changing in order to effect a balance of the out-of-phase 
forces. Because there is an insufficient elastic restoring force at  the slightly 
lower wave speed, the wave will diverge. For class B waves, on the other hand, 
the retarding effect of the damping on the wave will tend to move it to a wave- 
speed region where the net restoring force is positive and the wave amplitude will 
attenuate (as a damped oscillation). 

The different effect of damping in the two cases becomes even clearer when one 
considers the energy associated with a wave. The disturbances created in the 
flow by the travelling wave in the wall will cause a change in the kinetic energy 
of the fluid. Since this change is of second order in the wave amplitude, it is 
necessary to include all second-order contributions like, for example, that 
emanating from the use of y = Re (a exp [ia(x - ct ) ] }  instead of y = 0 as the lower 
boundary of the fluid. One then finds that the mean change in kinetic energy per 
unit streamwise length is given to second order by 

AT = -&a2(1-@). (60) 

(This result is given in non-dimensional form.) Hence, for c < 1 there is a loss 
of kinetic energy in the fluid associated with the wave. Some of this energy has 
gone into kinetic and elastic energy in the membrane. Adding these contributions, 
we find that the total energy change associated with the wave in the membrane 
and the fluid is 

AW = &a2[[am(ci + c2) - (1 - C2)]. 

Using the definition of the impedance of the wall in the presence of the stream, 
this expression can immediately be identified with 

A W = - Im (c2(aAZ/ac)} &.a2. (62) 

Indeed, one can obtain this result without investigating the flow and the mem- 
brane separately. Consider the energy required to bring the velocity amplitude 
0( t )  (assumed as real) up slowly from zero a final value 0,. The pressure ampli- 
tude required to be applied on the lower surface of the flexible wall is, to f i s t  order, 

j3 = Re{O(t)AZ+b(t)(i/a)(aAZ/ac)}, (63) 
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the last term being obtained by a first-order analytical continuation of c into the 
complex plane. The total energy supplied to the system during the process is 

Averaging over x and using (63) for f3 gives 

The first term may be interpreted as the energy dissipated during the process, 
whereas the second term represents the potential energy stored in the system. 
Hence, by.substituting a2c2a2 for O;, (62) follows. The result (64) does not neces- 
sarily hold in the case of a viscous flow, since the energy dissipated in the fluid 
may contain a part proportional to dC/dt. (To calculate this one would need to 

K.-H. / 

\ Class A 

amplitude 

FIGURE 10. Variation of total kinetic and elastic energy with amplitude 
for the three different classes of waves. 

consider also second-order terms in the equations of motion.) However, this is 
unlikely to affect the discussion below, which is based on the assumption that 
(62) gives correctly the sign of the stored energy in the viscous case also. Since 
Im (aAZ/ac) is positive for class A waves, negative for class B waves and zero for 
Kelvin-Helmholtz instability, A W would vary with amplitude in the manner 
illustrated in figure 10. Thus, for class A waves A W  is always negative, and 
further dissipation of energy from the system, through increased wall damping, 
will only make the wave amplitude increase to compensate for the lowered energy 
level. Class B waves, on the other hand, have a positive AW and therefore behave 
in the ‘normal, way. For the Kelvin-Helmholtz instability, finally, the total 
energy level does not change with changing amplitude; there is only a re- 
distribution of energy from kinetic energy in the fluid to elastic energy in the 
wall, and any increase in the wall damping will consequently have a negligible 
effect on the disturbance amplitude. 

Returning now to the complete viscous problem, there will always be regions 
of a and c for which the elastic restoring force of the wall will be insufficient to 
balance the hydrodynamic force, since there are combinations for which Y,  is 
close to zero, i.e. 2, very large. Thus, this is equivalent to the second case in the 
potential-flow solution above, and hence class A waves will always be possible. 

40-2 
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In  applying the energy considerations above, it is necessary to include in the 
full problem two further mechanisms of energy transfer, namely through the 
action of viscosity and Reynolds stresses, respectively. Through the first one, 
mechanical energy is dissipated into heat, and viscosity thus has an effect very 
much similar to that of the wall damping. Thus we arrive at  a new explanation 
of the role of viscosity in the rigid-wall case, namely that it provides the mech- 
anism whereby the energy required to make the Tollmien-Schlichting waves 
unstable is removed. The Reynolds stresses generally tend to transfer energy 
from the free stream to the disturbance.? This energy transfer increases with 
increased wave velocity and increased curvature of the boundary-layer profile. 
It is then clear how the present method of boundary-layer Stabilization works. 
The energy required to attenuate the class A waves is supplied by the Reynolds 
stresses. By decreasing the wall stiffness, the wave speed is increased and 
thereby also the rate at which energy is being transmitted by the Reynolds 
stresses. The lower the damping in the flexible wall, the less the wave speed 
needs to be increased to achieve stabilization. On the other hand, the damping 
must be large enough so that the total effective damping for the class B waves 
is positive. 

8. Conclusions 
The method used in the present analysis differs from that commonly employed 

for stability problems in that the problem is first formulated as a direct boundary- 
value problem, namely that of calculating the wall admittance required to main- 
tain a given neutrality stable wave. Comparison of this admittance to that of a 
given wall results in a characteristic equation whose solution yields the curve for 
neutral stability. In  addition to simplifying the analysis somewhat, the method 
also leads to a systematic physical interpretation of the general effects of the 
flexible surface. The characteristic equation derived in the present paper differs 
from that given in Benjamin’s (1960) analysis by terms involving the (generally 
small) quantity h(c) arising from the use of a slightly more accurate version of 
the viscous solution. In  the present paper, the characteristic equation for the 
flexible-wall problem is thus brought up to the same state of development as 
the currently used equation for the rigid-wall case (see, for example, Lin 1955), 
to which the present equation reduces as the wall flexibility vanishes. For a 
flexible wall with damping, the correction terms involving h tend to be slightly 
more important than in the rigid-wall case; however, they are still small and can 
probably be neglected in most practical cases, at  least for a Blasius profile. 

To solve the characteristic equation, a relatively simple graphical procedure 
was devised, which could also be used with measured properties of the elastic 
wall. Since for the wall with damping several regions of instability can occur, it  

t At first sight it may seem paradoxical that the Reynolds stresses can change the total 
energy level of the flow since the net effect of energy transfer from one part of the flow 
to another obviously would be zero. However, upon closer examination one finds that the 
Reynolds stresses cause an ultimate decrease of viscous energy dissipation (through the 
action of the second-order mean-flow distortion), which in the case of neutral disturbances 
is equal to the ‘energy transmitted by Reynolds stresses’. Since the latter phraseology 
is an accepted one in the literature on hydrodynamic stability, we have retained it here. 
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was necessary to develop a method whereby one can determine which side of 
a neutral curve is unstable. The graphical method proposed is based on the 
assumption that the amplification rates are generally small. 

The main effort in the present paper was expended on the study of the effects 
of a wall with internal damping, This subject was treated only qualitatively in 
Benjamin’s (1960) paper. For simplicity we assumed that the mechanical 
properties of the flexible wall could be fully described by three parameters, 
namely the mass coefficient, free-surface (Rayleigh) wave speed, and the damping. 
Even for such a rudimentary wall representation, the problem of determining 
the combination of these parameters giving the best over-all effect is quite 
difficult. According to the theory, stabilization can always be achieved by a 
wall of sufficient flexibility and lightness, provided all the different modes of 
instability can be suppressed. For practical reasons one would therefore like to 
find the combination of parameters that allows the use of the heaviest and 
stiffest surface. The graphical method developed in the present paper produces 
such a combination for each wave-number considered. The design of any 
material wall for operation at  given Reynolds number has, of course, to be based 
on a compromise between the requirements for various wave-numbers and, for 
such an over-all design, the present method may be of limited practical value. 
However, it does produce some useful information; in particular it indicates 
that the damping should be very low for best results. 

The effects of damping were discussed to some length. The remarkable result 
that wall damping tends to destabilize class A waves was found to have an 
interesting explanation. It was shown that class Awaves are energy deficient in 
the sense that the total kinetic and elastic energy of the system decreases with 
increasing wave amplitude. Hence any further energy dissipation through wall 
damping will only make the amplitude increase to  compensate for the lowered 
energy level. This unexpected property was discovered by considering the very 
simplified problem of the stability of a flexible wall in potential flow, which was 
essentially the problem studied by Miles (1956) in a paper on panel flutter. How- 
ever, Miles only considered non-dissipative panels in which case the only in- 
stability that can occur is of the Kelvin-Helmholtz type. For such an in- 
stability the energy content is constant and damping will have very little effect 
on it. The fact that damping can introduce a new mode of mild panel instability 
has apparently been overlooked in the literature, although some calculations 
have indicated that damping occasionally can be destabilizing. This mode of 
instability will occur at  lower speeds than the Kelvin-Helmholtz one, namely 
as soon as the dynamic pressure becomes high enough to sustain a steady wavi- 
ness of the panel, i.e. at the speed of ‘static divergence’. 

We may conjecture that since the Tollmien-Schlichting waves are of the 
class A type, they are associated with a decrease in the total kinetic energy 
of the flow in the boundary layer. Hence they can only be stabilized by a 
mechanism of ‘negative damping’ which is supplied by the Reynolds stresses 
feeding energy from the free stream to the disturbance. In  the rigid-wall case 
this negative damping can be increased by giving the free stream outside 
the boundary layer a positive velocity gradient, in which case the magnitude 
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of the curvature of the boundary-layer velocity profile a t  the critical layer 
increases and hence the Reynolds stresses. In  the present method of boundary- 
layer stabilization, the phase speed of the Tollmien-Schlichting wave is 
increased through the introduction of wall flexibility and thereby the Reynolds 
stresses. The greater the damping in the wall, the more the phase speed must 
be increased through increased wall flexibility to make the total damping 
(internal damping less the effect of Reynolds stresses) negative and hence 
stabilize the class A waves. If the wall damping is not too small, the total 
damping at  the phase speed for the class B waves will be positive, and hence 
both types of waves will be damped. Evidently the selection of the best wall 
damping is rather critical, as is also apparent from the numerical example shown. 

The limited number of numerical calculations presented seems to indicate 
that the increases in critical Reynolds number obtainable with flexible surfaces 
of rather large flexibility are quite modest. It seems therefore unlikely that the 
reported success of Kramer’s (1960 a, b )  experiments could be explained on the 
basis of the simple stability theory alone. Furthermore, he seems to have obtained 
the best results with moderately high wall damping, contrary to the present 
analysis which shows that the damping ought to be very low. One is therefore 
led to look for other explanations of the observed effects. The two most likely 
alternative explanations are that the flexible surface either modifies some later 
stages in the process of transition, or that it has an effect on the fully developed 
turbulent boundary layer. The further exploration of these ideas is unfor- 
tunately hampered by the incomplete understanding of both the phenomenon 
of transition and the turbulent boundary layer. However, the first of these 
alternatives is supported by Benjamin’s (1960) observation that the flexible 
surface tends to cancel the wall friction-layer and hence make the disturbance 
mainly inviscid. To gain some quantitative insight into this phenomenon, we may 
write (18) as follows: 

where 

By introducing equations (20)-(26) and solving (31) for u+iv in terms of 9 
and Y ,  we obtain 

For a rigid wall, obviously C = 1, since the viscous solution q53 must cancel the 
inviscid one @ a t  the wall. As an example, figure 11 shows C for the case of the 
flexible wall considered in figure 4. Evidently the flexible wall has cancelled 
about 80% of the viscous solution. (Note that this particular wall has an un- 
favourable effect on the critical Reynolds number.) The flexibility also generally 
causes the unstable region to move towards smaller wave-numbers. Both these 
effects tend to give the instability more the character of ‘panel instability’ than 
‘ boundary-layer instability’; in particular the vorticity released in the flow by 
the disturbance (which probably originates to a large extent from the wall 
friction-layer) will decrease. 
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Some obvious and straightforward extensions of the present analysis are 
possible. One is to consider waves that are oblique to the free stream. In  the 
present case Squire’s (1933) transformation is not directly applicable, since the 
surface flexibility scales as the square of the velocity component in the direction 
of the wave and therefore becomes less effective for oblique waves. Another 
possible extension is to include the tangential deformation of the surface. This 
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FIGURE 11. Ratio of ‘viscous’ to ‘non-viscous’ solution at the wall for the case 
considered in figure 4. ---- , Rigid wall; -, flexible wall. 

was done for a non-dissipative surface in Nonweiler’s (1961) paper. One should 
note in this connexion that the shear fluctuations at large Reynolds numbers 
are terms of higher order and should therefore be neglected for consistency with 
the asymptotic solution. However, the deformation normal to the surface may 
cause tangential deformations that may affect the stability. A third, somewhat 
more complicated extension is to make the corresponding analysis for com- 
pressible flow. Such preliminary calculations have been carried out recently 
by Linebarger (1961). 

I am indebted to Dr T. Brooke Benjamin for many helpful discussions of the 
problem and his constructive criticism of a preliminary version of the present 
paper. His extended visit to Mass. Inst. of Technology during August 1961 was 
supported by the Office of Naval Research through an arrangement with Prof. 
C. C. Lin. This research was sponsored in part by the Air Force Office of 
Scientific Research under Contract AF 49 (638)-933. 
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